Acta Cryst. (1965). 18, 131

The crystal structure of Li₁₅Ge₄.* By Q. Johnson, Gordon S. Smith and D. Wood, Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 20 July 1964)

An investigation of the Li–Ge system in the region of $\rm Li_4Ge$ was undertaken to determine if a compound isomorphous with $\rm Li_{22}Pb_5$ (Zalkin & Ramsey, 1958) exists.

'Reactor grade' lithium weighing 4.82 ± 0.02 g and believed to be 99.9% pure, together with 12.60 ± 0.02 g spectroscopically pure germanium, was placed in a clean tantalum crucible. The lithium was handled only in a dry box filled with argon and was clean and bright without any visible oxide. The lid of the crucible, which contained a thermocouple well, was welded in place in the dry box before the crucible was removed to a DTA furnace. The furnace could be rocked to stir the melt.

From a maximum temperature of 946 °C, cooling was accomplished without detection of thermal effects until 690 ± 2 °C. A subsequent strong heat effect was recorded at 667 ± 2 °C. Two weaker heat effects were observed at about 655 and 567 °C. The cooling was interrupted in the range 616–654 °C where it was held for 18 hours. Final cooling (from 654 °C) took place over a period of two hours. Owing to supercooling and the small amount

of material used, the nature of the heat effect could not be determined from the shape of the cooling curve.

X-ray powder diffraction studies with Cu $K\alpha$ radiation ($\lambda=1.5418$ Å) indicated the presence of two phases. Not only the sought for face-centered cubic phase with a=18.87 Å, isomorphous with $\text{Li}_{22}\text{Pb}_5$, but also a bodycentered cubic phase with $a=10.72\pm0.05$ Å was observed. At this point we were not aware of the powder work by Gladyshevskii & Kripyakevich (1960) who had also observed this body-centered cubic phase with a cell constant of 10.783 ± 0.002 Å and had established this phase to be $\text{Li}_{15}\text{Ge}_4$; therefore single-crystal studies were undertaken in order to determine its composition and structure.

A single crystal of the latter compound was ground to a spherical shape in a dry box, sealed in a 0.2 mm capillary and examined by both Weissenberg and precession methods. In addition to the body centering extinctions, systematic extinctions were observed for hhl when $2h+l \neq 4n$. These extinctions are unique to space group $I\bar{4}3d$. Pseudo-extinctions were observed when h, k = 2n and $h+k+l \neq 4n$. These conditions are met if germanium is located in the 16(c) position (International Tables for X-ray Crystallography, 1952). This suggests

Table 1. Observed and calculated structure factors for Li₁₅Ge₄

h	k	l	$\boldsymbol{F_o}$	$\boldsymbol{F_c}$	α	$\sigma(\boldsymbol{F}_o)$	1 4	h	\boldsymbol{k}	l	F_o	F_c	α	$\sigma(F_o)$
0	0	4	174	174	0.00	1.5		1	4	5	131	137	$153 \cdot 87$	1.0
Ŏ	Õ	8	106	104	180.00	1.1	l	1	4	7	105	106	208.94	1.1
ŏ	ĭ	3	172	171	270.00	$2 \cdot 0$	1	1	4	9	90	84	147.84	1.5
Õ	ī	5	196	192	270.00	$1 \cdot 4$		1	5	6	142	150	181.66	1.0
0	1	7	135	127	270.00	$2 \cdot 9$		1	5	8	75	82	$24 \cdot 77$	$2 \cdot 0$
ō	ī	9	89	87	270.00	1.5		1	6	7	101	110	181.69	$1 \cdot 2$
0	2	2	301	312	0.00	4.5		2	2	4	179	175	30.30	$1 \cdot 3$
0	2	4	12	5	180.00	4.0		2	2	8	123	122	144.52	$1 \cdot 0$
0	2	6	0	2	0.00	1.0	1	2	3	3	221	226	235.81	$2 \cdot 3$
Ō	2	8	17	8	180.00	$4 \cdot 0$	ļ	2	3	5	64	64	$300 \cdot 22$	1.8
Ō	2	10	153	150	180.00	1.0	i	2	3	7	61	62	233.55	$2 \cdot 2$
0	3	5	130	130	270.00	1.0		2	3	9	108	108	300.83	$1 \cdot 2$
ŏ	3	7	111	111	270.00	1.0	ì	2	4	6	98	106	90.93	1.1
0	3	9	0	1	90.00	1.0		2	4	8	18	13	$148 \cdot 43$	$4 \cdot 0$
Ŏ	4	4	75	74	0.00	1.3	ĺ	2	5	5	63	61	$251 \cdot 27$	$2 \cdot 0$
ŏ	$\bar{4}$	6	25	20	0.00	4.0		2	5	7	60	60	304.53	$2 \cdot 3$
Ŏ	4	8	54	50	180.00	$2 \cdot 8$		2	6	8	74	81	$90 \cdot 12$	$2 \cdot 1$
0	5	7	17	10	270.00	4.0		2	7	7	51	54	$57 \cdot 19$	3.1
ō	5	9	74	77	270.00	$2 \cdot 2$		3	3	6	129	123	$180 \cdot 26$	1.0
0	6	6	12	2	180.00	4.0		3	4	5	121	121	209.86	1.0
0	6	8	9	5	0.00	1.0		3	4	7	117	114	144.31	1.1
1	1	2	117	113	240.03	1.1	ļ	3	4	9	0	1	$225 \cdot 87$	1.0
1	1	6	69	71	186.73	1·5	1	3	5	6	61	57	187.77	$2 \cdot 2$
ì	ï	10	45	37	113.82	$3 \cdot 0$		3	5	8	83	82	151.31	1.7
1	2	3	82	85	$122 \cdot 44$	1.0		3	6	7	44	48	181.69	$3 \cdot 0$
ī	2	5	168	167	243.61	1.1		4	4	4	205	197	77.77	$1 \cdot 1$
ī	2	7	139	138	$120 \cdot 43$	1.0		4	4	8	144	136	105.68	1.0
1	2	9	58	56	247.68	$2 \cdot 6$		4	5	7	13	11	$237 \cdot 12$	1.0
1	3	4	146	150	210.89	1.0		4	6	6	193	198	88.88	1.0
1	3	6	71	67	355.79	1.5		5	5	6	50	56	168.91	$2 \cdot 2$
1	3	8	121	118	$147 \cdot 41$	1.0	1							

^{*} This work was performed under the auspices of the U.S. Atomic Energy Commission.

isomorphism with the $\mathrm{Cu}_{15}\mathrm{Si}_4-D8_6$ structure (Morral & Westgren, 1934). Based on this stoichiometry the crystallographic density is 2·13 g.cm⁻³.

The intensities of 61 reflections were measured with Mo $K\alpha$ radiation (λ =0·7107 Å) on a G.E. XRD 5 diffractometer equipped with a single-crystal orienter. A spherical absorption correction was applied to the data (μR =0·75). The structure was refined by the full-matrix least-squares program ACA No. 317 (Gantzel, Sparks & Trueblood, unpublished) with the use of a weighting scheme designed to take counting statistics into account. The observed and calculated structure factors along with $\sigma(F_o)$ are shown in Table 1 for which a final reliability index of 4·1% including missing reflections was obtained. Further least-squares refinements result in no change in atomic parameters. The atomic parameters are:

16 Ge (c)
$$x = 0.2084 \pm 0.0002$$
 $B = 1.48 \pm 0.10$ Å²
12 Li(1) (a) $B = 0.9 \pm 1.2$
48 Li(2) (e) $x = 0.129 \pm 0.004$ $B = 2.9 \pm 0.6$
 $y = 0.154 \pm 0.003$
 $z = -0.040 \pm 0.004$

The interatomic distances less than 3.1 Å are shown in Table 2. These have been computed with a = 10.783 Å.

The compounds which have so far been found to have

The compounds which have so far been found to have the $D8_6$ structure are given in Table 3.

Table 2. Interatomic distances for Li, 5Ge,

J
$\begin{array}{c} 2 \cdot 912 \pm 0 \cdot 001 \text{ Å} \\ 2 \cdot 60 & \pm 0 \cdot 04 \\ 2 \cdot 80 & \pm 0 \cdot 04 \\ 2 \cdot 87 & \pm 0 \cdot 04 \end{array}$
$\begin{array}{l} 2.912 \pm 0.001 \\ 2.75 \pm 0.04 \\ 2.81 \pm 0.04 \end{array}$
$\begin{array}{cccc} 2.60 & \pm 0.04 \\ 2.80 & \pm 0.04 \\ 2.87 & \pm 0.04 \\ 2.87 & \pm 0.04 \\ 2.81 & \pm 0.04 \\ 2.81 & \pm 0.04 \\ 2.75 & \pm 0.08 \\ 2.78 & \pm 0.07 \\ 3.07 & \pm 0.06 \end{array}$

Table 3. Compounds with the D8₆ structure

Compound	Cell constant	r_a/r_b	
Cu ₁₅ Si ₄ Na ₁₅ Pb ₄	9·71 Å 13·32	0·97 1·09	Morral & Westgren (1934) Zintl & Harder (1936)
$\mathrm{Li_{15}Ge_{4}}$	10.783	1.14	Gladyshevskii & Kripyakevich (1960); this work

The radius ratios have been computed with values from the compilation of Teatum, Gschneidner & Waber (1959). In addition to the above compounds, Pearson (1958) suggests that the compound 'Cu₃As' studied by Steenberg (1936–1938) is also of the $D8_6$ type. The radius ratio of 0.92 for this compound is similar to the above ratios.

Although the evidence appears to favor an isomorphous $\text{Li}_{15}\text{Sn}_4$ $(r_a/r_b=1\cdot01)$, we have not observed such a compound in preparations near this composition. $\text{Na}_{15}\text{Sn}_4$ $(r_a/r_b=1\cdot24)$ is not isomorphous (Zintl & Harder, 1936). This appears to establish an upper limit to the radius ratio for this structure type.

We are indebted to Mr Vernon G. Silveira for the powder photography and Dr John Carpenter for the germanium.

References

GLADYSHEVSKII, E. L. & KRIPYAKEVICH, P. I. (1960). Kristallografiya, 5, 574.

International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.

MORRAL, F. R. & WESTGREN, A. (1934). Ark. Kemi Min. Geol. 11B, No. 37.

Pearson, W. B. (1958). Handbook of Lattice Spacings and Structures of Metals and Alloys, p. 395. New York: Pergamon Press.

STEENBERG, B. (1936-1938). Ark. Kemi Min. Geol. 12A, No. 26.

Teatum, E., Gschneidner, K., Jr. & Waber, J. (1959). Los Alamos Scientific Laboratory, Report LA-2345.

ZALKIN, A. & RAMSEY, W. J. (1958). J. Phys. Chem. 62, 689

ZINTL, E. & HARDER, A. (1936). Z. Phys. Chem. B34,

Acta Cryst. (1965). 18, 132

Crystal data for the double salt, lithium ammonium hexafluorosilicate. By Reuben Rudman, Polytechnic Institute of Brooklyn, Brooklyn 1, N.Y., U.S.A. and John A. Skarulis, Department of Chemistry, St. Johns University, Jamaica 32, N.Y., U.S.A.

(Received 4 August 1964)

The hitherto unreported double salt, lithium ammonium hexafluorosilicate, LiNH₄SiF₆, was discovered during a systematic study of the dissociation pressures and solubilities of the Li₂SiF₆-(NH₄)₂SiF₆-H₂O system at 25 °C. Single crystals of LiNH₄SiF₆ were prepared by slow precipitation from aqueous solution by addition of ethanol. The results of these studies as well as the experimental details of the growth of single crystals of this compound are described elsewhere. (Skarulis, Darnowski, Kilroy & Milazzo, 1964.)

Chemical analysis of the crystals confirmed the existence of ${\rm LiNH_4SiF_6}$. The density was determined by the use of a pycnometer with benzene as the displacing liquid. Rotation and Weissenberg photographs were obtained with Ni-filtered Cu K radiation and precession photographs were obtained with Zr-filtered Mo K radiation. ${\rm LiNH_4SiF_6}$ was found to be pseudo-orthorhombic, actually monoclinic. All of the crystals which were examined (by optical means as well as by X-ray diffraction) were twinned, a tendency of crystals pos-